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Transverse modulational instability of partially incoherent soliton stripes
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Based on the Wigner distribution approach, an analysis of the effect of partial incoherence on the transverse
instability of soliton structures in nonlinear Kerr media is presented. It is explicitly shown that for a Lorentzian
incoherence spectrum the partial incoherence gives rise to a damping which counteracts, and tends to suppress,
the transverse instability growth. However, the general picture is more complicated and it is shown that the
effect of the partial incoherence depends crucially on the form of the incoherence spectrum. In fact, for spectra
with finite rms-width, the partial incoherence may even increase both the growth rate and the range of unstable,
transverse wave numbers.
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I. INTRODUCTION ity of soliton structures in nonlinear Kerr media. It will be

Nonlinear phenomena like self-focusing, collapse, moduShown that in the case of a Lore.ntzian. _incoherence profile,
lational and transverse instabilities of cylindrical light beamsthe growth rate of the transverse instability can be expressed
are some of the most fundamental consequences of the intefmply as the growth rate for the coherent case minus a sta-
play between linear diffraction and self-phase modulation irPilizing damping rate due to the partial incoherence. How-
nonlinear Kerr media. Various physical mechanisms, whictever, we also show that the case of a Lorentzian profile rep-
tend to suppress such instabilities, e.g., nonlinear saturationgsents a very special case and the effect on the growth rate
have been diligently analyzed in a number of works, seén a general situation depends crucially on the form of the
references in[1]. These fundamental instability problems incoherence spectrum, ¢B8]. Using a perturbation approach
have continued to attract attention in connection with newto the dispersion relation for a general form of the incoher-
scientific and technical developments. There is currently &nce spectrum, we show analytically that for weak incoher-
strong interest focused on the effects of partial incoherencence spectra of finite rms-width, the region of instability al-
on different nonlinear instabilitiel—6]. The results of these ways widens and the growth rate is increased in some part of
studies show that the modulational and collapse instabilitieghe region. This result agrees well with a recent numerical
in general tend to be suppressed when the waves are partiayudy of the transverse instability of partially incoherent soli-
incoherent. Recently, the effect of partial incoherence on theons [3], where the angular spectrum is assumed to have
transverse modulational instability of soliton stripes in non-Gaussian form.
linear Kerr media has been investigated, E&8&]. A soliton
stripe is a semi-localized structure, which is of self-trapped
soliton form in thex direction, uniform in they direction, Il. THE WIGNER APPROACH
and propagates in thedirection. While a one-dimensional
(1D) soliton is resilient to perturbations, the soliton stripe
exhibits instability with respect to transverse perturbations
i.e., perturbations in thg direction, see, e.g., Reff7]. It has

been showrj2,3] that when the stripe is partially incoherent Schrodinger(NLS) equation for the complex wave field,

in the y direction, the transverse modulational instability r.2), describing the two-dimensional propagation of a par-
tends to be suppressed and the break-up of the stripe, due% o g the ) . propag 'P
tially coherent wave in a diffractive nonlinear Kerr medium,

the transverse modulational instability, can be prevented pro-

vided the incoherence is sufficiently strong. This behavior is

similar to that of the 1D modulational instability. However, iﬁ_l// + lvz y+ (D=0 (1)

analysis of the transverse modulational instability is more oz 2 * ’

complicated than the corresponding analysis in the case of

1D modulational instability. In fact, even in the fully coher- where the angular brackets denote statistical averagejs

ent case, the problem of finding the growth rate as a functiothe distance of propagation, and (x,y) denotes the trans-

of the wave number of the perturbations does not have amerse coordinates. The medium response is here assumed to

explicit analytical solution, cf[7]. depend only on the statistically averaged intensity ile.,

In the present work we present an analytical investigation={yu* ), and to be of the nonlinear Kerr type. This form of

of the effect of partial incoherence on the transverse instabilthe NLS equation is valid when the medium response time is
much larger than the characteristic time of the stochastic in-
tensity fluctuations and yet much shorter than the character-

*Electronic address: lukas@elmagn.chalmers.se istic time of the wave envelope variation.

Our analysis is based on the Wigner approach, which has
been shown to be a convenient tool for analyzing the dynam-
ics of partially incoherent light waves, dfl,4-§.

The starting point of the analysis is the nonlinear
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Within the Wigner approach, Eql) is transformed into au - A
the Wigner-Moyal equation for the corresponding Wigner ru+ Pt 2NoSU +kpyV = - GnFRy, (8a)
function p(r,p,2), viz.

., NESAN _ IV+p Y+ NSV -kpU=G.nCRy.  (8D)
peid s +2N(r,z)sm<2&r ﬁp)p(r,p,z) 0, (2 Px 0 Py Ro
where the sine operator is defined in terms of its power exJ NS equation system has to be solved subject to the consis-
pansion and the arrows indicate the direction of operation ofeNcy conditionsfUdp.dp,=n(x) and fVdpdp,=0.

the derivatives, as explained in more detail in Ré¢#s-6).

The W_igner distribution is determined 2by the s_tochastic IIl. THE CASE OF LORENTZIAN INCOHERENCE

properties ofy(r,z) and converselN={|4{?)=[pdp is the SPECTRUM

average field intensity. In the present application we consider

a background solution in the form of a soliton stripe, i.e., a For the development of our analysis it is useful to first
semi-localized structure, which constitutes a self-trappedeconsider the case of a fully coherent wave. The transverse
soliton form in thex direction, is uniform in they direction, ~ coherence spectrum is then a Dirac delta function i.e.,
and propagates in thedirection. This structure is assumed G(py)=d(py). The earlier introduced notatiors, and G-
partially incoherent in thg direction. The corresponding in- now become a sum and a difference, respectively, of two

tensity and the concomitant Wigner distribution are translated delta functions. Thgg dependence of the andV

functions can be expressed in similar manner, Us=[ &(p,

No(x) = sechi(x) 3 +ki2)+a(p,~k/2TU(r.p) and  V=[a(p,+k/2)- APy
and -k/2)To(r,py). The combinations of delta functions now ap-
pearing in EQ.(8) can be shown to be separable, and the

2 sin(2xp,) resulting system of equations reduces to
tl = . . G = t G 1 4
poX.P) sinh(2x)sinh(7py) (Py) = Rox.pIG(RY). (4) R A
respectively, wherés(p,) characterizes the spectrum of the Lu- 2Y =R, (93)

partial incoherence in the transverse direction. In order to

analyze the stability of this background solution, we consider ~ K2 .
the dynamics of a small perturbation by writipg p(X, p) Lo + ETJ =nCRy, (9b)
+p4(r,p,2), wherep; < p,. The linear evolution of the small
perturbationp; is then governed by where we have introduced @-independent operatdr de-
s = fined asI::F+an/ax+2N0é Equation(9) can be combined
%P1 +p- p1 + 2N sin(———) (r,p,2 into a single equation fad, which reads
gz ar 0>\ 2oxap, /PP ’
(1 5 3 ) T—- KPP H{LINCR, + 2LP {L}InSR, =0, (10)
+2m(r,2)sin| S — - — ] po(x,p) =0, (5) - . -
29 9p where P~ denotes the inverse of the operaffl}=k*/4

wheren, = fp,dp. When considering the transverse modula-+(L)* and curly brackets denote the argument of the opera-

tional instability, the perturbations can be assumed to be ddor. The solution of the eigenvalue probléin=I'(0,k)) can-

scribed by harmonic variations, i.e., ny(r,2) not be found analytically, and resort must be taken to ap-

=n(x)cogky)exp(I'2), wherek is the wave number of the Proximate analytical —techniques and/or  numerical

transverse perturbation. With this ansatz for the perturbatiorffomputations, cf[9,10. As an example, a derivation in-

Eq. (5) can be rewritten in the compact form spired by direct variational methods is given in the Appen-
dix.

ap1 With this result in mind for later comparison, we turn

+p- +2NgSp; + G,nRy + " WCRO—O, (6)

9z ar back to the partially incoherent problem. In the same way as
. for the coherent case, we can eliminate the functidn Eq.
where we have introduced the operators (8) to obtain
3= Sin(lii)y &= COS(Eii) L2U + kpy(kpU + G_nCR) = - LG,nR,. (1)
29X dpy 29X dpy

Integrating this equation oves,-space we obtain
and used the notation§,=G(p,+k/2)+G(p,—k/2) and

G_=G(py+k/2)-G(p,~k/2). The solution of Eq(6) can be f Udpy“‘f A—l(;_kpyn&;Rodpyﬁuf A‘lG+I:n:<1?odg,
represented as —0 o o

p1=[U(x,p)cogky) + V(x,p)sinky)Jexpl'2),  (7) =0, (12

where the unknown functions U and V satisfy where yet another new operatér,, has been introduced. It is
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bers and increased the growth rate in part of the unstable
region. Only for sufficiently strong incoherence did the un-

Stable wavelength range start to shrink and the growth rate to
decrease and to ultimately vanish. Thus, it seems that the
interchanged adG_p,nCRy=G_p,A"InCR,. For the sub- properties of the transverse modulational instability depend
sequent analysis we need the e|genvalue rather than the opncially on the form of the incoherence spectrum. That in-

erator itself smceA‘lnCRo il (py)cmnCRo The eigen- deed this is so will be shown analytically in the subsequent

valuea,! corresponding to the operatér? is given byam paragraph.

:1/()\§1+ k?p) where, in turn\Z is the eigenvalue of thie

operator. IV. RESULTS FOR A GENERAL INCOHERENCE
We will now assume the incoherence spectrum to have a SPECTRUM

Lorentzian profile,G(p,)= pol[q-r(p§+p§)] with the charac-

teristic width py. This assumption has the important conse-,

quence that the integrals appearing in E®) can be evalu-

ated explicitly to yield

thep, dependence in the operatewrl is multlpllcatlve some
important simplifications can be made. For instance, in the
second integral of Ec{12) the ordering of the terms may be

In general, a complete analytical solution of E8). seems
impossible to find. However, important information about the
properties of the solution can be obtained by considering
certain moments of the equations. For this purpose, we inte-
f‘” -1 grate the coupled equations fdrandV overx andp,. This

e |
o O 027 (poragfior)’  (HY vields

[(U)) +kp(V) =0, (179
_ 2(\m+ Kpp)
1 m
G.dp, = . (14
L"“m B W22+ (po+ A7) Y T(V)) = kp(U)) = G(NRy), (17b)
Thus the dispersion E¢12), can be expressed in the follow- Where double angular brackets)) denote integration over
ing form: and p,. The consistency condition for the real part of the

perturbatlon can conveniently be expressed as

f_x Udp, - k2|5—1{kp0 + I:}néRO +2(kpy + I:) |5-1{kpo foc «(Undp, = (na(p)) (18

+LInR,=0. 1
NSR=0 (19 Thus, solving foK(U)) from Eg.(17) and inserting this into
A comparison of the two dispersion relatiofsne for the  Eq. (18), we obtain the dispersion relation for the transverse
coherent, Eq(10), and one for the partially incoherent, Eqg. instability of incoherent solutions in the form
(15), casé shows that the only difference between the two is
the shift in the argument of thié operator; the argumeitis f ﬂ'e;z _1 - M (19)
replaced by(L +kpy) in the partially incoherent case. Equiva- — I+ (kpy) Q ((nRy)

lently, sinceL=I"+p,d/x+2NyS, this implies thatl'(0,k)  We underline that_ is determined by the coherence prop-
=I"(po. k) +kpo, wherel'(pg, k) denotes the growth rate of the erties of the soliton background solution, but that the param-
partially incoherent case. Thus we finally come to the impor-eterQ may depend on the coherence spectrum. Nevertheless,
tant conclusion that, for Lorentzian shaped incoherence spethe result expressed by E{.9) is completely general and is
trum, the role of the partial incoherence on the transversgalid for arbitrary form of the coherence spectrum. We em-
modulational instability of a soliton stripe can be expressechasize that Eq(19) is of the same form as the dispersion
in exactly the same form as for the 1D modulational &g relation for the modulational instability of a partially coher-
viz. simply as a stabilizing damping according to ent, but homogeneous, background, [6(8], in which case
_ the parameteQ is easily determined to b®=1. On the

I'(po.k) =T'(0.K) = kpo, (16) other hand, for the transverse instability of a partially inco-
where I'(0,k) ~k\3-Kk2/2, cf. the Appendix. This implies herent soliton stripe, the proper value @fcannot be easily
two things: the instability is suppressed by the incoherencéound, although we may state th@t< 1. For the special case
for all wave numbers in the rand®,k.], where the cut-off of a Lorentzian spectrum studied above, we can take one step
wave numberk,, is given bykc:\"3—4p(2) and second, the further in Eq.(19) to obtain a dispersion relation
range of instability decrea_ses_ monotonously with increasing (T +kpy)? = (2Q - K2/2)K¥/2 (20)
incoherence. However, this simple monotonously suppress-
ing effect of the partial incoherence on the transverse moduwhere, however, th€ factor still remains to be determined.
lational instability is not of a general nature. An indication of The analysis of the previous section and the result of the
this was found in[3], where numerical investigations were Appendix indicate tha®=~ 3/4, independent of the degree of
made using Gaussian as well as Lorentzian coherence spgocoherence, i.e., independent
tra. Somewhat counter-intuitively it was found that for the In order to pursue this line of analysis for general forms
case of a Gaussian spectrum, increasing incoherence actuatlfincoherence spectra, we will assume weak partial incoher-
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ence in the sense that the incoherence spectrum is very nar- V. CONCLUSION
row i.e., pp<<k. The integral of Eq(19) may then be evalu- . ) . _
ated approximately for anywell-behavedl incoherence The present analysis has, in some detail, considered the

This implies that the functionF(p,) effect of partial incoherence on the transverse modulational
instability of soliton stripes in nonlinear Kerr type media.

However, it should be possible to generalize our mathemati-

cal tool to the case of a saturable nonlinearity. The main

spectrum G(p%,).
=kp,/(I"?+k?py) multiplying G_ in the integral can be ex-
panded around the shifted wave numbeké2tto yield

* problem will then be the soliton structure itself and the in-
f F(py)[G(py + k/2) - G(p, - k/2)]dp, stability problem of the coherent case.
w We have shown that, for a Lorentzian form of the inco-
K K K+ herence spectrum, the effect of partial incoherence on the
== D + @(3 _a)prms’ (21) transverse instability agrees qualitatively with the corre-

sponding result derived for the case of 1D modulational in-
where ®=T2+k*/4 and we have definep;, = (x?) as the stability; the growth rate decreases monotonously for in-

rms-width of the spectrum creasing partial incoherence. However, the Lorentzian form
is a very special case in the sense that although it has the nice
(" - property of being analytically integrable, it does not have a
()= f_x XZG(X)dX/ J_m G(x)ax. (22) finite rms-width. Our analysis of general spectra with finite
rms-widths shows quite a different qualitative behavior of
The dispersion relation given by E(L9) then becomes the growth rate for weak increasing incoherence. The growth
) rate is found to decrease for transverse wave numbers in the
2= kZ(Q _ k_) _ @<3 _ k_4> p2 (23) range 0<k<k., but to increase in the complementary range
4 0] @ /)rms k« <k<k;, wherek; is the cut off wave number of the insta-

bility and k. is a characteristic transition wave number. In

Since the incoherence is assumed weak, we will assume thadition, it is found thak, does in fact increase. These ana-
the dispersion relation given by ER1) may be simplified |ytical results agree well with numerical simulations per-
perturbatively by takingQ equal to its coherent valu@; and  formed in [3] as well as with previous analytical work of

replacing ®=I">+k*/4~k?Q; in the incoherently induced oyrs,[8], for the simpler case of the 1D modulational insta-
correction term. This yields bility.

2=~ K ( —k—z)—<3—k—2> ; (24
=~ Qc 2 Q. Prms | - APPENDIX

From this approximate expression for the growth rate, we The dispersion relation for the transverse modulational
can draw two important conclusions, valid for arbitrgbpt  instability cannot be determined analytically even in the co-
narrow) incoherence spectra with finite rms-widtfi) the  herent case and several different approximations have been
instability tends to be suppressed for all wave numbers in thpresented, cf[9-11. We will here give a simple, accurate
range 0< k?< 3Q., whereas in the region® <k’<4Q,, the and as far as we know new, approximation using a direct
growth rate is enhanced by the partial incohereriitg;the  variational approach. Linearization of the two-dimensional
critical (non-zerg wave numberk., at which the growth rate coherent NLS equation, given in E@.), around the station-
goes to zero, increases and is givenkdy=4(Q.+p2,J=~3  ary solutiony=sechx exp(iz/2) gives rise to two coupled
+4p? < These analytical results agree well with what wasequations for the real(x), and imaginary(x), parts of the
obtained by Torregt al. [3] using numerical computations. perturbed wave field. Inserting the assumed variationg in
On the other hand, these results are in contradiction wittand z for the modulational perturbationge., u,v «expliky
the results obtained in the previous section for the case of alI'z)), these equations become
Lorentzian spectrum. There it was found tligtthe growth
rate decreased for all wave numbefis) the cut off wave
number, k., monotonously decreased with increasing inco-
herence. The explanation of this apparent contradiction is ~ ~
that the analysis of this section excludes spectra, which, likevhere the operatois, andL, are self-adjoint and defined by
the Lorentzian, do not have a finite rms-width. A direct im-
plication of this result is that the effect of partial incoherence R 1d2 1
depends crucially on the form of the incoherence spectrum, Li=- cae T 5(1 +k?) - seci x,
even to the extent that in some wavelength range the insta-
bility may even be enhanced by the incoherence. As demon-
strated in[3], for increasing incoherence, the range of un-
stable wave numbers first increases, but then eventually
shrinks until finally the instability is completely quenched. . o
This complete behavior is outside the range of validity of theEquation(Al) can be reformulated as a variational problem
perturbation analysis presented in the current section. corresponding to the Lagrangiaﬁ:%lev—%uLzu—FUU.

Fu=|:1v, FU:—I:zu, (A1)

L,=L,-2 secRx. (A2)
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An ansatz is made for the functionsandv asu=ad,, v i L
= B¢, Where ¢, and ¢, are trial functions andv and 8 are r2=- (¢4 2|¢2><¢1|2 1/ (A3)
the variational parameters. Inserting this ansatz into the CALY

variational  integral, we find <£>:%az<¢1||:1|¢1> With the intuitive choice of the trial functions as equal to the

—a,BF<¢1|¢2>—%ﬁz<¢2|L2|¢2>, where angular bracket§é)  eigenfunctions of the operatots andL,, i.e., ¢;=sechx
denote integration over. The variational equations with re- and ¢d,=sech x, respectively, the dispersion relation for the
spect toor and B give rise to a linear system of equations for coherent case of the transvere instability becomes

these parameters. A nontrivial solution of the system requires )

its determinant to vanish, giving the following dispersion T2(0,k) ~ 2= K3(3 - kz)i ~ k_(3 K.  (Ad)
relation ’ 3n? 4

[1] Yu. Kivshar and G. P. AgrawaDptical Solitons, From Fibers ~ [7] Yu. Kivshar and D. E. Pelinovsky, Phys. Re331 117

to Photonic Crystal§Academic, San Diego, 2003 (2000.
[2] C. Anastassioet al, Phys. Rev. Lett.85, 4888(2000. [8] D. Anderson, L. Helczynski-Wolf, M. Lisak, and V. Semenov,
[3] J. Torres, C. Anastassiou, M. Segeev, M. Soljacic, and D. Phys. Rev. E69, 025601(2004).

Christodoulides, Phys. Rev. B5, 015601(200D. [9] V. E. Zakharov and A. M. Rubenchik, Sov. Phys. JEBB,
[4] L. Helczynski, D. Anderson, R. Fedele, B. Hall, and M. Lisak, 494 (1974.

IEEE J. Sel. Top. Quantum ElectroB, 408(2002. [10] D. Anderson, A. Bondeson, and M. Lisak, J. Plasma PRys.
[5] D. Dragoman, Appl. Opt35, 4142(1996. 259(1979.
[6] B. Hall, M. Lisak, D. Anderson, R. Fedele, and V. E. Semenov,[11] E. W. Laedke and K. H. Spatschek, Phys. Rev. Létt. 1798

Phys. Rev. E65, 035602(2002). (1978.

026603-5



