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Based on the Wigner distribution approach, an analysis of the effect of partial incoherence on the transverse
instability of soliton structures in nonlinear Kerr media is presented. It is explicitly shown that for a Lorentzian
incoherence spectrum the partial incoherence gives rise to a damping which counteracts, and tends to suppress,
the transverse instability growth. However, the general picture is more complicated and it is shown that the
effect of the partial incoherence depends crucially on the form of the incoherence spectrum. In fact, for spectra
with finite rms-width, the partial incoherence may even increase both the growth rate and the range of unstable,
transverse wave numbers.
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I. INTRODUCTION

Nonlinear phenomena like self-focusing, collapse, modu-
lational and transverse instabilities of cylindrical light beams
are some of the most fundamental consequences of the inter-
play between linear diffraction and self-phase modulation in
nonlinear Kerr media. Various physical mechanisms, which
tend to suppress such instabilities, e.g., nonlinear saturation,
have been diligently analyzed in a number of works, see
references in[1]. These fundamental instability problems
have continued to attract attention in connection with new
scientific and technical developments. There is currently a
strong interest focused on the effects of partial incoherence
on different nonlinear instabilities[1–6]. The results of these
studies show that the modulational and collapse instabilities
in general tend to be suppressed when the waves are partially
incoherent. Recently, the effect of partial incoherence on the
transverse modulational instability of soliton stripes in non-
linear Kerr media has been investigated, see[2,3]. A soliton
stripe is a semi-localized structure, which is of self-trapped
soliton form in thex direction, uniform in they direction,
and propagates in thez direction. While a one-dimensional
(1D) soliton is resilient to perturbations, the soliton stripe
exhibits instability with respect to transverse perturbations,
i.e., perturbations in they direction, see, e.g., Ref.[7]. It has
been shown[2,3] that when the stripe is partially incoherent
in the y direction, the transverse modulational instability
tends to be suppressed and the break-up of the stripe, due to
the transverse modulational instability, can be prevented pro-
vided the incoherence is sufficiently strong. This behavior is
similar to that of the 1D modulational instability. However,
analysis of the transverse modulational instability is more
complicated than the corresponding analysis in the case of
1D modulational instability. In fact, even in the fully coher-
ent case, the problem of finding the growth rate as a function
of the wave number of the perturbations does not have an
explicit analytical solution, cf.[7].

In the present work we present an analytical investigation
of the effect of partial incoherence on the transverse instabil-

ity of soliton structures in nonlinear Kerr media. It will be
shown that in the case of a Lorentzian incoherence profile,
the growth rate of the transverse instability can be expressed
simply as the growth rate for the coherent case minus a sta-
bilizing damping rate due to the partial incoherence. How-
ever, we also show that the case of a Lorentzian profile rep-
resents a very special case and the effect on the growth rate
in a general situation depends crucially on the form of the
incoherence spectrum, cf.[8]. Using a perturbation approach
to the dispersion relation for a general form of the incoher-
ence spectrum, we show analytically that for weak incoher-
ence spectra of finite rms-width, the region of instability al-
ways widens and the growth rate is increased in some part of
the region. This result agrees well with a recent numerical
study of the transverse instability of partially incoherent soli-
tons [3], where the angular spectrum is assumed to have
Gaussian form.

II. THE WIGNER APPROACH

Our analysis is based on the Wigner approach, which has
been shown to be a convenient tool for analyzing the dynam-
ics of partially incoherent light waves, cf.[1,4–6].

The starting point of the analysis is the nonlinear
Schrödinger(NLS) equation for the complex wave field,
csr ,zd, describing the two-dimensional propagation of a par-
tially coherent wave in a diffractive nonlinear Kerr medium,
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where the angular bracketsk·l denote statistical average,z is
the distance of propagation, andr =sx,yd denotes the trans-
verse coordinates. The medium response is here assumed to
depend only on the statistically averaged intensity i.e.,I
=kcc* l, and to be of the nonlinear Kerr type. This form of
the NLS equation is valid when the medium response time is
much larger than the characteristic time of the stochastic in-
tensity fluctuations and yet much shorter than the character-
istic time of the wave envelope variation.*Electronic address: lukas@elmagn.chalmers.se
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Within the Wigner approach, Eq.(1) is transformed into
the Wigner-Moyal equation for the corresponding Wigner
function rsr ,p ,zd, viz.
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where the sine operator is defined in terms of its power ex-
pansion and the arrows indicate the direction of operation of
the derivatives, as explained in more detail in Refs.[4–6].
The Wigner distribution is determined by the stochastic
properties ofcsr ,zd and converselyN=kucu2l=erdp is the
average field intensity. In the present application we consider
a background solution in the form of a soliton stripe, i.e., a
semi-localized structure, which constitutes a self-trapped
soliton form in thex direction, is uniform in they direction,
and propagates in thez direction. This structure is assumed
partially incoherent in they direction. The corresponding in-
tensity and the concomitant Wigner distribution are

N0sxd = sech2sxd s3d

and

r0sx,pd =
2 sins2xpxd

sinhs2xdsinhsppxd
Gspyd ; R0sx,pxdGspyd, s4d

respectively, whereGspyd characterizes the spectrum of the
partial incoherence in the transverse direction. In order to
analyze the stability of this background solution, we consider
the dynamics of a small perturbation by writingr=r0sx,pd
+r1sr ,p ,zd, wherer1!r0. The linear evolution of the small
perturbationr1 is then governed by
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wheren1=er1dp. When considering the transverse modula-
tional instability, the perturbations can be assumed to be de-
scribed by harmonic variations, i.e., n1sr ,zd
=nsxdcosskydexpsGzd, where k is the wave number of the
transverse perturbation. With this ansatz for the perturbation,
Eq. (5) can be rewritten in the compact form
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G−

k

]n1

]y
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where we have introduced the operators

Ŝ= sinS1
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and used the notationsG+=Gspy+k/2d+Gspy−k/2d and
G−=Gspy+k/2d−Gspy−k/2d. The solution of Eq.(6) can be
represented as

r1 = fUsx,pdcosskyd + Vsx,pdsinskydgexpsGzd, s7d

where the unknown functions U and V satisfy

GU + px
]U

]x
+ 2N0ŜU + kpyV = − G+nŜR0, s8ad

GV + px
]V

]x
+ 2N0ŜV − kpyU = G−nĈR0. s8bd

This equation system has to be solved subject to the consis-
tency conditionseUdpxdpy=nsxd andeVdpxdpy=0.

III. THE CASE OF LORENTZIAN INCOHERENCE
SPECTRUM

For the development of our analysis it is useful to first
reconsider the case of a fully coherent wave. The transverse
coherence spectrum is then a Dirac delta function i.e.,
Gspyd=dspyd. The earlier introduced notationsG+ and G−

now become a sum and a difference, respectively, of two
translated delta functions. Thepy dependence of theU andV
functions can be expressed in similar manner, i.e.,U=fdspy

+k/2d+dspy−k/2dgũsr ,pxd and V=fdspy+k/2d−dspy

−k/2dgṽsr ,pxd. The combinations of delta functions now ap-
pearing in Eq.(8) can be shown to be separable, and the
resulting system of equations reduces to

L̂ũ −
k2

2
ṽ = − nŜR0, s9ad

L̂ṽ +
k2

2
ũ = nĈR0, s9bd

where we have introduced apy-independent operatorL̂ de-

fined asL̂=G+px] /]x+2N0Ŝ. Equation(9) can be combined
into a single equation forũ, which reads

ũ − k2P̂−1hL̂jnĈR0 + 2L̂P̂−1hL̂jnŜR0 = 0, s10d

where P̂−1 denotes the inverse of the operatorP̂hL̂j=k4/4

+sL̂d2 and curly brackets denote the argument of the opera-
tor. The solution of the eigenvalue problemsG=Gs0,kdd can-
not be found analytically, and resort must be taken to ap-
proximate analytical techniques and/or numerical
computations, cf.[9,10]. As an example, a derivation in-
spired by direct variational methods is given in the Appen-
dix.

With this result in mind for later comparison, we turn
back to the partially incoherent problem. In the same way as
for the coherent case, we can eliminate the functionV in Eq.
(8) to obtain

L̂2U + kpyskpyU + G−nĈR0d = − L̂G+nŜR0. s11d

Integrating this equation overpy-space we obtain

E
−`

`

Udpy +E
−`

`

Â−1G−kpynĈR0dpy +E
−`

`

Â−1G+L̂nŜR0dpy

= 0, s12d

where yet another new operator,Â, has been introduced. It is
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defined asÂ=fk2py
2+ L̂2g and Â−1 denotes its inverse. Since

thepy dependence in the operatorÂ−1 is multiplicative, some
important simplifications can be made. For instance, in the
second integral of Eq.(12), the ordering of the terms may be

interchanged asÂ−1G−pynĈR0=G−pyÂ
−1nĈR0. For the sub-

sequent analysis we need the eigenvalue rather than the op-

erator itself sinceÂ−1nĈR0=omam
−1spydcmnĈR0. The eigen-

valueam
−1 corresponding to the operatorÂ−1 is given byam

−1

=1/slm
2 +k2py

2d where, in turn,lm
2 is the eigenvalue of theL̂2

operator.
We will now assume the incoherence spectrum to have a

Lorentzian profile,Gspyd=p0/ fpspy
2+p0

2dg, with the charac-
teristic width p0. This assumption has the important conse-
quence that the integrals appearing in Eq.(12) can be evalu-
ated explicitly to yield

E
−`

`

am
−1G−pydpy =

− 1

kfsk/2d2 + sp0 + lm/kd2g
, s13d

E
−`

`

am
−1G+dpy =

2slm + kp0d
k2lmfsk/2d2 + sp0 + lm/kd2g

. s14d

Thus the dispersion Eq.(12), can be expressed in the follow-
ing form:

E
−`

`

Udpy − k2P̂−1hkp0 + L̂jnĈR0 + 2skp0 + L̂dP̂−1hkp0

+ L̂jnŜR0 = 0. s15d

A comparison of the two dispersion relations[one for the
coherent, Eq.(10), and one for the partially incoherent, Eq.
(15), case] shows that the only difference between the two is

the shift in the argument of theP̂ operator; the argumentL̂ is

replaced bysL̂+kp0d in the partially incoherent case. Equiva-

lently, since L̂=G+px] /]x+2N0Ŝ, this implies thatGs0,kd
=Gsp0,kd+kp0, whereGsp0,kd denotes the growth rate of the
partially incoherent case. Thus we finally come to the impor-
tant conclusion that, for Lorentzian shaped incoherence spec-
trum, the role of the partial incoherence on the transverse
modulational instability of a soliton stripe can be expressed
in exactly the same form as for the 1D modulational case[6],
viz. simply as a stabilizing damping according to

Gsp0,kd = Gs0,kd − kp0, s16d

where Gs0,kd<kÎ3−k2/2, cf. the Appendix. This implies
two things: the instability is suppressed by the incoherence
for all wave numbers in the rangef0,kcg, where the cut-off
wave number,kc, is given bykc=Î3−4p0

2 and second, the
range of instability decreases monotonously with increasing
incoherence. However, this simple monotonously suppress-
ing effect of the partial incoherence on the transverse modu-
lational instability is not of a general nature. An indication of
this was found in[3], where numerical investigations were
made using Gaussian as well as Lorentzian coherence spec-
tra. Somewhat counter-intuitively it was found that for the
case of a Gaussian spectrum, increasing incoherence actually

increased the range of modulationally unstable wave num-
bers and increased the growth rate in part of the unstable
region. Only for sufficiently strong incoherence did the un-
stable wavelength range start to shrink and the growth rate to
decrease and to ultimately vanish. Thus, it seems that the
properties of the transverse modulational instability depend
crucially on the form of the incoherence spectrum. That in-
deed this is so will be shown analytically in the subsequent
paragraph.

IV. RESULTS FOR A GENERAL INCOHERENCE
SPECTRUM

In general, a complete analytical solution of Eq.(8) seems
impossible to find. However, important information about the
properties of the solution can be obtained by considering
certain moments of the equations. For this purpose, we inte-
grate the coupled equations forU andV over x andpx. This
yields

GkkUll + kpykkVll = 0, s17ad

GkkVll − kpykkUll = G−kknR0ll, s17bd

where double angular bracketskk·ll denote integration overx
and px. The consistency condition for the real part of the
perturbation can conveniently be expressed as

E
−`

`

kkUlldpy = kkndspxdll. s18d

Thus, solving forkkUll from Eq. (17) and inserting this into
Eq. (18), we obtain the dispersion relation for the transverse
instability of incoherent solutions in the form

E
−`

` kpyG−

G2 + skpyd2dpy = −
1

Q
= −

kkndspxdll
kknR0ll

. s19d

We underline thatG− is determined by the coherence prop-
erties of the soliton background solution, but that the param-
eterQ may depend on the coherence spectrum. Nevertheless,
the result expressed by Eq.(19) is completely general and is
valid for arbitrary form of the coherence spectrum. We em-
phasize that Eq.(19) is of the same form as the dispersion
relation for the modulational instability of a partially coher-
ent, but homogeneous, background, cf.[6,8], in which case
the parameterQ is easily determined to beQ=1. On the
other hand, for the transverse instability of a partially inco-
herent soliton stripe, the proper value ofQ cannot be easily
found, although we may state thatQ,1. For the special case
of a Lorentzian spectrum studied above, we can take one step
further in Eq.(19) to obtain a dispersion relation

sG + kp0d2 = s2Q − k2/2dk2/2 s20d

where, however, theQ factor still remains to be determined.
The analysis of the previous section and the result of the
Appendix indicate thatQ<3/4, independent of the degree of
incoherence, i.e., independent ofp0.

In order to pursue this line of analysis for general forms
of incoherence spectra, we will assume weak partial incoher-
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ence in the sense that the incoherence spectrum is very nar-
row i.e., p0!k. The integral of Eq.(19) may then be evalu-
ated approximately for any(well-behaved) incoherence
spectrum Gspyd. This implies that the functionFspyd
=kpy/ sG2+k2py

2d multiplying G− in the integral can be ex-
panded around the shifted wave numbers ±k/2 to yield

E
−`

`

FspydfGspy + k/2d − Gspy − k/2dgdpy

< −
k2

F
+

k4

F2S3 −
k4

F
Dprms

2 , s21d

where F=G2+k4/4 and we have definedprms
2 ;kx2l as the

rms-width of the spectrum

kx2l =E
−`

`

x2GsxddxYE
−`

`

Gsxddx. s22d

The dispersion relation given by Eq.(19) then becomes

G2 = k2SQ −
k2

4
D −

k4Q

F
S3 −

k4

F
Dprms

2 . s23d

Since the incoherence is assumed weak, we will assume that
the dispersion relation given by Eq.(21) may be simplified
perturbatively by takingQ equal to its coherent valueQc and
replacing F=G2+k4/4<k2Qc in the incoherently induced
correction term. This yields

G2 < k2FSQc −
k2

4
D − S3 −

k2

Qc
Dprms

2 G . s24d

From this approximate expression for the growth rate, we
can draw two important conclusions, valid for arbitrary(but
narrow) incoherence spectra with finite rms-width:(i) the
instability tends to be suppressed for all wave numbers in the
range 0,k2ø3Qc, whereas in the region 3Qc,k2,4Qc, the
growth rate is enhanced by the partial incoherence;(ii ) the
critical (non-zero) wave number,kc, at which the growth rate
goes to zero, increases and is given bykc

2<4sQc+prms
2 d<3

+4prms
2 . These analytical results agree well with what was

obtained by Torreset al. [3] using numerical computations.
On the other hand, these results are in contradiction with

the results obtained in the previous section for the case of a
Lorentzian spectrum. There it was found that(i) the growth
rate decreased for all wave numbers,(ii ) the cut off wave
number,kc, monotonously decreased with increasing inco-
herence. The explanation of this apparent contradiction is
that the analysis of this section excludes spectra, which, like
the Lorentzian, do not have a finite rms-width. A direct im-
plication of this result is that the effect of partial incoherence
depends crucially on the form of the incoherence spectrum,
even to the extent that in some wavelength range the insta-
bility may even be enhanced by the incoherence. As demon-
strated in[3], for increasing incoherence, the range of un-
stable wave numbers first increases, but then eventually
shrinks until finally the instability is completely quenched.
This complete behavior is outside the range of validity of the
perturbation analysis presented in the current section.

V. CONCLUSION

The present analysis has, in some detail, considered the
effect of partial incoherence on the transverse modulational
instability of soliton stripes in nonlinear Kerr type media.
However, it should be possible to generalize our mathemati-
cal tool to the case of a saturable nonlinearity. The main
problem will then be the soliton structure itself and the in-
stability problem of the coherent case.

We have shown that, for a Lorentzian form of the inco-
herence spectrum, the effect of partial incoherence on the
transverse instability agrees qualitatively with the corre-
sponding result derived for the case of 1D modulational in-
stability; the growth rate decreases monotonously for in-
creasing partial incoherence. However, the Lorentzian form
is a very special case in the sense that although it has the nice
property of being analytically integrable, it does not have a
finite rms-width. Our analysis of general spectra with finite
rms-widths shows quite a different qualitative behavior of
the growth rate for weak increasing incoherence. The growth
rate is found to decrease for transverse wave numbers in the
range 0,k,k* , but to increase in the complementary range
k* ,k,kc, wherekc is the cut off wave number of the insta-
bility and k* is a characteristic transition wave number. In
addition, it is found thatkc does in fact increase. These ana-
lytical results agree well with numerical simulations per-
formed in [3] as well as with previous analytical work of
ours,[8], for the simpler case of the 1D modulational insta-
bility.

APPENDIX

The dispersion relation for the transverse modulational
instability cannot be determined analytically even in the co-
herent case and several different approximations have been
presented, cf.[9–11]. We will here give a simple, accurate
and as far as we know new, approximation using a direct
variational approach. Linearization of the two-dimensional
coherent NLS equation, given in Eq.(1), around the station-
ary solutionc=sechx expsiz/2d gives rise to two coupled
equations for the realusxd, and imaginaryvsxd, parts of the
perturbed wave field. Inserting the assumed variations iny
andz for the modulational perturbations(i.e., u,v~expsiky
+Gzd), these equations become

Gu = L̂1v, Gv = − L̂2u, sA1d

where the operatorsL̂1 andL̂2 are self-adjoint and defined by

L̂1 = −
1

2

d2

dx2 +
1

2
s1 + k2d − sech2 x,

L̂2 = L̂1 − 2 sech2 x. sA2d

Equation(A1) can be reformulated as a variational problem

corresponding to the LagrangianL= 1
2vL̂1v− 1

2uL̂2u−Guv.
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An ansatz is made for the functionsu and v as u=af2, v
=bf1, wheref1 andf2 are trial functions anda andb are
the variational parameters. Inserting this ansatz into the

variational integral, we find kLl= 1
2a2kf1uL̂1uf1l

−abGkf1uf2l− 1
2b2kf2uL̂2uf2l, where angular bracketsk·l

denote integration overx. The variational equations with re-
spect toa andb give rise to a linear system of equations for
these parameters. A nontrivial solution of the system requires
its determinant to vanish, giving the following dispersion
relation

G2 = −
kf2uL̂2uf2lkf1uL̂1uf1l

kf1uf2l2 . sA3d

With the intuitive choice of the trial functions as equal to the

eigenfunctions of the operatorsL̂1 and L̂2, i.e., f1=sechx
andf2=sech2 x, respectively, the dispersion relation for the
coherent case of the transvere instability becomes

G2s0,kd < G2 = k2s3 − k2d
8

3p2 <
k2

4
s3 − k2d. sA4d
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